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Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)

→ “OK Google, directions home”

Text-to-speech synthesis (TTS)

“Take the first left” →
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Speech production process
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Typical flow of TTS system

Sentence segmentation
Word segmentation
Text normalization

Part-of-speech tagging
Pronunciation

Prosody prediction
Waveform generation

TEXT

Text analysis

SYNTHESIZED
SEECH

Speech synthesisdiscrete ⇒ discrete

discrete ⇒ continuous

NLP

Speech

Frontend

Backend
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Speech synthesis approaches

Rule-based, formant synthesis
[1]

Sample-based, concatenative
synthesis [2]

Model-based, generative synthesis

| text=”Hello, my name is Heiga Zen.”)p(speech=
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Unit selection concatenative speech synthesis

• Build a database with wide linguistic diversity.

• Forced align and chop up into diphones.

• For a new utterance, choose units matching the diphone sequence.

• Minimize total cost by greedy search.

• Cost =
∑

i U(i) + J(i, i− 1)

• Splice together adjacent units matching up last pitch period.
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TTS databases

• Want high quality,

− Studio recording
− Controlled, consistent conditions
− No background noise
− Single (professional) speaker

• Typically read speech
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TTS databases

• VCTK (Voice Cloning Tool Kit)

− 109 native speakers of English 400 sentences. 96kHz 24 bits
− Intended for adaptation of an average voice.

• Google TTS 10s of hours

• Edingburgh Merlin system
https://github.com/CSTR-Edinburgh/merlin
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TTS performance metrics

• TTS performance is subjective.

• Intelligibility (in noise)

• Naturalness

− Mean Opinion Score (5 point scale)
− A/B preference tests.
− e.g. Amazon Mechanical Turk 100 utterances 5–7 tests per sample
− Care needed to control for human factors.

• Objective measures

− PESQ
− Robust MOS
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Probabilistic formulation of TTS

Random variables

X Speech waveforms (data) Observed

W Transcriptions (data) Observed

w Given text Observed

x Synthesized speech Unobserved

Synthesis

• Estimate posterior predictive distribution
→ p(x | w,X ,W)

• Sample x̄ from the posterior distribution

X W w

x
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Probabilistic formulation

Introduce auxiliary variables (representation) + factorize dependency

p(x | w,X ,W) =

∫∫∫ ∑
∀l

∑
∀L

{
p(x | o)p(o | l, λ)p(l | w)

p(X | O)p(O | L, λ)p(λ)p(L | W)/ p(X )
}
dodOdλ

where

O,o: Acoustic features

L, l: Linguistic features

λ: Model

X W w

x

L lO

λ

o
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Approximation (1)

Approximate {sum & integral} by best point estimates (like MAP) [3]

p(x | w,X ,W) ≈ p(x | ô)

where

{ô, l̂, Ô, L̂, λ̂} = arg max
o,l,O,L,λ

{
p(x | o)p(o | l, λ)p(l | w)

p(X | O)p(O | L, λ)p(λ)p(L | W)
}

ô

X W w

x

L lO

λ

o
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Approximation (2)

Joint → Step-by-step maximization [3]

Ô = arg max
O

p(X | O) Extract acoustic features

L̂ = arg max
L

p(L | W) Extract linguistic features

λ̂ = arg max
λ

p(Ô | L̂, λ)p(λ) Learn mapping

l̂ = arg max
l

p(l | w) Predict linguistic features

ô = arg max
o

p(o | l̂, λ̂) Predict acoustic features

x̄ ∼ fx(ô) = p(x | ô) Synthesize waveform

X

O

W

L

w

l

λ

Ô L̂

o

λ̂

l̂

x

ô
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X

O

W

L

w

l

λ
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x̄ ∼ fx(ô) = p(x | ô)
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ô

Andrew Senior Generative Model-Based Text-to-Speech Synthesis 12 of 50



Approximation (2)

Joint → Step-by-step maximization [3]
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x̄ ∼ fx(ô) = p(x | ô) Synthesize waveform

X

O

W

L

w

l

λ
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Representations: acoustic, linguistic, mapping
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Representation – Linguistic features

Hello, world.

Hello, world.

hello world

h-e2 l-ou1 w-er1-l-d

h e l ou w er l d Phone: voicing, manner, ...

Syllable: stress, tone, ...

Word: POS, grammar, ...

Phrase: intonation, ...

Sentence: length, ...

→ Based on knowledge about spoken language

• Lexicon, letter-to-sound rules

• Tokenizer, tagger, parser

• Phonology rules
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Representation – Acoustic features

Duration model

• Typically run a parametric synthesizer on frames (e.g. 5ms windows)

• Need to know how many frames each phonetic unit lasts.

• Model this separately e.g. FFNN linguistic features → duration.
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Representation – Acoustic features

Piece-wise stationary, source-filter generative model p(x | o)

Pulse train (voiced)

White noise (unvoiced)

Speech

Vocal source Vocal tract filter

Fundamental
frequency

Aperiodicity,
voicing, ...

+
 

0

 80

0

[dB]

8 [kHz]

Cepstrum, LPC, ...

e(n)
x(n) = h(n)*e(n)

h(n)

overlap/shift
windowing

→ Needs to solve inverse problem

• Estimate parameters from signals

• Use estimated parameters (e.g., cepstrum) as acoustic features
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Representation – Mapping

Rule-based, formant synthesis [1]

Ô = arg max
O

p(X | O) Vocoder analysis

L̂ = arg max
L

p(L | W) Text analysis

λ̂ = arg max
λ

p(Ô | L̂, λ)p(λ) Extract rules

l̂ = arg max
l

p(l | w) Text analysis

ô = arg max
o

p(o | l̂, λ̂) Apply rules

x̄ ∼ fx(ô) = p(x | ô) Vocoder synthesis

X

O

W

L

w

l

λ

Ô L̂

o

λ̂

l̂

x

ô

→ Hand-crafted rules on knowledge-based features
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Representation – Mapping

HMM-based [4], statistical parametric synthesis [5]

Ô = arg max
O

p(X | O) Vocoder analysis

L̂ = arg max
L

p(L | W) Text analysis

λ̂ = arg max
λ

p(Ô | L̂, λ)p(λ) Train HMMs

l̂ = arg max
l

p(l | w) Text analysis

ô = arg max
o

p(o | l̂, λ̂) Parameter generation

x̄ ∼ fx(ô) = p(x | ô) Vocoder synthesis

X

O

W

L

w

l
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Ô L̂

o

λ̂

l̂

x

ô

→ Replace rules by HMM-based generative acoustic model
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HMM-based generative acoustic model for TTS

• Context-dependent subword HMMs

• Decision trees to cluster & tie HMM states → interpretable

q1

o1

q2

o2

q3

o3

q4

o4

l

l1 lN

o1 o2

o3 Too2 ... ... ... ...o4 o2

o6o5

...

...
: Discrete

: Continuous

p(o | l, λ) =
∑
∀q

T∏
t=1

p(ot | qt, λ)P (q | l, λ) qt: hidden state at t

=
∑
∀q

T∏
t=1

N (ot;µqt ,Σqt)P (q | l, λ)
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HMM-based generative acoustic model for TTS

• Non-smooth, step-wise statistics
→ Smoothing is essential

• Difficult to use high-dimensional acoustic features (e.g., raw spectra)
→ Use low-dimensional features (e.g., cepstra)

• Data fragmentation
→ Ineffective, local representation

A lot of research work have been done to address these issues
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Alternative acoustic model

HMM: Handle variable length & alignment
Decision tree: Map linguistic → acoustic

yes noyes no

...

yes no

yes no yes no

Statistics of acoustic features o

Linguistic features l

Regression tree: linguistic features → Stats. of acoustic features

Replace the tree w/ a general-purpose regression model
→ Artificial neural network
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FFNN-based acoustic model for TTS [6]

ht

ltFrame-level linguistic feature

otFrame-level acoustic feature

Input

Target

lt

o t o t+1o t−1

lt+1lt−1

ht = g (Whllt + bh) λ̂ = arg min
λ

∑
t

‖ot − ôt‖2

ôt = Wohht + bo λ = {Whl,Woh, bh, bo}

ôt ≈ E [ot | lt] → Replace decision trees & Gaussian distributions
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RNN-based acoustic model for TTS [7]

Recurrent
connections

lt

o t o t+1o t−1

lt+1lt−1ltFrame-level linguistic feature

otFrame-level acoustic feature

Input

Target

ht = g (Whllt +Whhht−1 + bh) λ̂ = arg min
λ

∑
t

‖ot − ôt‖2

ôt = Wohht + bo λ = {Whl,Whh,Woh, bh, bo}

FFNN: ôt ≈ E [ot | lt] RNN: ôt ≈ E [ot | l1, . . . , lt]
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NN-based generative acoustic model for TTS

• Non-smooth, step-wise statistics
→ RNN predicts smoothly varying acoustic features [7, 8]

• Difficult to use high-dimensional acoustic features (e.g., raw spectra)
→ Layered architecture can handle high-dimensional features [9]

• Data fragmentation
→ Distributed representation [10]

NN-based approach is now mainstream in research & products

• Models: FFNN [6], MDN [11], RNN [7], Highway network [12], GAN
[13]

• Products: e.g., Google [14]

Andrew Senior Generative Model-Based Text-to-Speech Synthesis 25 of 50



NN-based generative acoustic model for TTS

• Non-smooth, step-wise statistics
→ RNN predicts smoothly varying acoustic features [7, 8]

• Difficult to use high-dimensional acoustic features (e.g., raw spectra)
→ Layered architecture can handle high-dimensional features [9]

• Data fragmentation
→ Distributed representation [10]

NN-based approach is now mainstream in research & products

• Models: FFNN [6], MDN [11], RNN [7], Highway network [12], GAN
[13]

• Products: e.g., Google [14]

Andrew Senior Generative Model-Based Text-to-Speech Synthesis 25 of 50



NN-based generative model for TTS
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Text → Linguistic → (Articulatory) → Acoustic → Waveform
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Knowledge-based features → Learned features

Unsupervised feature learning

x(t) 
(raw FFT spectrum) 

Acoustic
feature
o(t)

⇒

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0hello

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
w

orld

w(n)
(1-hot representation of word)

w(n+1)~x(t)

Linguistic
feature
l(n)

⇒
l(n-1)

• Speech: auto-encoder at FFT spectra [9, 15] → positive results

• Text: word [16], phone & syllable [17] → less positive
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Relax approximation
Joint acoustic feature extraction & model training

Two-step optimization → Joint optimization


Ô = arg max

O
p(X | O)

λ̂ = arg max
λ

p(Ô | L̂, λ)p(λ)

⇓
{λ̂, Ô} = arg max

λ,O
p(X | O)p(O | L̂, λ)p(λ)

Joint source-filter & acoustic model optimization

• HMM [18, 19, 20]

• NN [21, 22]

X

O

W

L

w

l

λ

L̂

o

λ̂

l̂

x

ô
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Relax approximation
Joint acoustic feature extracion & model training

Mixed-phase cepstral analysis + LSTM-RNN [22]

Linguistic
features ......

...

Back propagation

Fo
rw

ar
d

pr
op

ag
at

io
n

z-1 z-1

-1

Derivatives

z-1 z-1z z
-

...

Speech

Cepstrum

... ...

Pulse train

lt

pn

G(z)

H -1
u (z)

f

s

e

o(v)t

d(u)
td(v)

t

o(u)t

xn

n

n

n
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Relax approximation
Direct mapping from linguistic to waveform

No explicit acoustic features

{λ̂, Ô} = arg max
λ,O

p(X | O)p(O | L̂, λ)p(λ)

⇓
λ̂ = arg max

λ
p(X | L̂, λ)p(λ)

Generative models for raw audio

• LPC [23]

• WaveNet [24]

• SampleRNN [25]

X W

L

w

l

λ

L̂

λ̂

l̂

x
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WaveNet: A generative model for raw audio

Autoregressive (AR) modelling of speech signals

x = {x0, x1, . . . , xN−1} : raw waveform

p(x | λ) = p(x0, x1, . . . , xN−1 | λ) =

N−1∏
n=0

p(xn | x0, . . . , xn−1,λ)

WaveNet [24]
→ p(xn | x0, . . . , xn−1, λ) is modeled by convolutional NN

Key components

• Causal dilated convolution: capture long-term dependency

• Gated convolution + residual + skip: powerful non-linearity

• Softmax at output: classification rather than regression

Andrew Senior Generative Model-Based Text-to-Speech Synthesis 33 of 50



WaveNet: A generative model for raw audio

Autoregressive (AR) modelling of speech signals

x = {x0, x1, . . . , xN−1} : raw waveform

p(x | λ) = p(x0, x1, . . . , xN−1 | λ) =

N−1∏
n=0

p(xn | x0, . . . , xn−1,λ)

WaveNet [24]
→ p(xn | x0, . . . , xn−1, λ) is modeled by convolutional NN

Key components

• Causal dilated convolution: capture long-term dependency

• Gated convolution + residual + skip: powerful non-linearity

• Softmax at output: classification rather than regression

Andrew Senior Generative Model-Based Text-to-Speech Synthesis 33 of 50



WaveNet: A generative model for raw audio

Autoregressive (AR) modelling of speech signals

x = {x0, x1, . . . , xN−1} : raw waveform

p(x | λ) = p(x0, x1, . . . , xN−1 | λ) =

N−1∏
n=0

p(xn | x0, . . . , xn−1,λ)

WaveNet [24]
→ p(xn | x0, . . . , xn−1, λ) is modeled by convolutional NN

Key components

• Causal dilated convolution: capture long-term dependency

• Gated convolution + residual + skip: powerful non-linearity

• Softmax at output: classification rather than regression

Andrew Senior Generative Model-Based Text-to-Speech Synthesis 33 of 50



WaveNet – Causal dilated convolution

100ms in 16kHz sampling = 1,600 time steps
→ Too long to be captured by normal RNN/LSTM

Dilated convolution
Exponentially increase receptive field size w.r.t. # of layers

Input

Output

Hidden
layer3

Hidden
layer2

Hidden
layer1

. . .

p(x  | x   ,..., x   )n n-16n-1

xn-1xn-2xn-3xn-16
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WaveNet – Non-linearity

Residual block

Residual block

Residual block

Residual block

...

...

1x1
1x1

1x1
1x1

512

512

512

512

512
512

512

512

512

256

30

ReLU

1x1256
ReLU

1x1256

Softm
ax

256∑

256

256

256
256

25
6

Skip connections

Residual block : 2x1 dilated conv → Gated activation → 1x1 Conv + Residual connection

1x1 : 1x1 conv

0p(x  | x ,..., x   )n n-1
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WaveNet – Softmax

Time

Am
plitude

Analog audio signal
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WaveNet – Softmax

Time

Am
plitude

Sampling & Quantization
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WaveNet – Softmax

Time

Am
plitude

1

16
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Categorical distribution → Histogram
  - Unimodal
  - Multimodal
  - Skewed
  ...
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WaveNet – Softmax

Time

Am
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Categorical distribution → Histogram
  - Unimodal
  - Multimodal
  - Skewed
  ...

Prof. D. Jurafsky - “Now TTS is 
the same problem as language
modeling!”
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WaveNet – Conditional modelling

Res. block

...

Res. block

Res. block

Res. block

Res. block

Res. block

Embedding
at time n hn

Linguistic features

xn-1xn-2xn-3xn-4

p(x  | x   ,..., x    , h ,   )n n-32n-1 n λ
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WaveNet vs conventional audio generative models

Assumptions in conventional audio generative models
[23, 26, 27, 22]

• Stationary process w/ fixed-length analysis window
→ Estimate model within 20–30ms window w/ 5–10 shift

• Linear, time-invariant filter within a frame
→ Relationship between samples can be non-linear

• Gaussian process
→ Assumes speech signals are normally distributed

WaveNet

• Sample-by-saple, non-linear, capable to take additional inputs

• Arbitrary-shaped signal distribution

SOTA subjective naturalness w/ WaveNet-based TTS [24]

HMM LSTM Concatenative WaveNet
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Outline

Generative TTS

Generative acoustic models for parametric TTS
Hidden Markov models (HMMs)
Neural networks

Beyond parametric TTS
Learned features
WaveNet
End-to-end

Conclusion & future topics



Relax approximation
Towards Bayesian end-to-end TTS

Integrated end-to-end
L̂ = arg max

L
p(L | W)

λ̂ = arg max
λ

p(X | L̂, λ)p(λ)

⇓
λ̂ = arg max

λ
p(X | W, λ)p(λ)

Text analysis is integrated to model

X W w

λ

λ̂

x
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Relax approximation
Towards Bayesian end-to-end TTS

Bayesian end-to-endλ̂ = arg max
λ

p(X | W, λ)p(λ)

x̄ ∼ fx(w, λ̂) = p(x | w, λ̂)

⇓
x̄ ∼ fx(w,X ,W) = p(x | w,X ,W)

=

∫
p(x | w, λ)p(λ | X ,W)dλ

≈ 1

K

K∑
k=1

p(x | w, λ̂k) ← Ensemble

Marginalize model parameters & architecture

X W w

λ

x
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Generative model-based text-to-speech synthesis

• Bayes formulation + factorization + approximations

• Representation: acoustic features, linguistic features, mapping

− Mapping: Rules → HMM → NN
− Feature: Engineered → Unsupervised, learned

• Less approximations

− Joint training, direct waveform modelling
− Moving towards integrated & Bayesian end-to-end TTS

Naturalness: Concatenative ≤ Generative

Flexibility: Concatenative � Generative (e.g., multiple speakers)
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Beyond “text”-to-speech synthesis

TTS on conversational assistants

• Texts aren’t fully contained

• Need more context

− Location to resolve homographs
− User query to put right emphasis

We need representation that can

organize the world information & make it accessible & useful

from TTS generative models
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Beyond “generative” TTS

Generative model-based TTS

• Model represents process behind speech production

− Trained to minimize error against human-produced speech
− Learned model → speaker

• Speech is for communication

− Goal: maximize the amount of information to be received

Missing “listener”

→ “listener” in training / model itself?
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Thanks!
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(4) Step-by-step maximization
e.g., statistical parametric TTS
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