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Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)
ool dh— e “OK Google, directions home”

Text-to-speech synthesis (TTS)
“Take the first left” — = Himmim -4
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Speech production process

Andrew Senior
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Typical flow of TTS system

TEXT

Sentence segmentation
Word segmentation v
Text normalization Text analysis

Part-of-speech tagging

Pronunciation

Prosody prediction

Speech synthesis Waveform generation

discrete = discrete

NLP |
Frontend SYNTHESIZED discrete = continuous
SEECH Speech
Backend

Qe ‘Q
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Speech synthesis approaches
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Speech synthesis approaches

Rule-based, formant synthesis
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Speech synthesis approaches

Rule-based, formant synthesis
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Sample-based, concatenative
synthesis [2]
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Andrew Senior

Speech synthesis approaches

Rule-based, formant synthesis
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Model-based, generative synthesis

Sample-based, concatenative
synthesis [2]
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Unit selection concatenative speech synthesis

@@W% -
Wl b
1V

Build a database with wide linguistic diversity.

Forced align and chop up into diphones.

For a new utterance, choose units matching the diphone sequence.

e Minimize total cost by greedy search.
Cost =, U(i) + J(i,i — 1)
Splice together adjacent units matching up last pitch period.
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TTS databases

e Want high quality,
— Studio recording
— Controlled, consistent conditions
— No background noise
— Single (professional) speaker

e Typically read speech
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TTS databases

e VCTK (Voice Cloning Tool Kit)

— 109 native speakers of English 400 sentences. 96kHz 24 bits
— Intended for adaptation of an average voice.

e Google TTS 10s of hours

e Edingburgh Merlin system
https://github.com/CSTR-Edinburgh/merlin
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TTS performance metrics

e TTS performance is subjective.
e Intelligibility (in noise)
e Naturalness

— Mean Opinion Score (5 point scale)

— A/B preference tests.

— e.g. Amazon Mechanical Turk 100 utterances 57 tests per sample
— Care needed to control for human factors.

e Objective measures

— PESQ
— Robust MOS
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Probabilistic formulation of TTS

Random variables

X Speech waveforms (data) Observed
W Transcriptions (data) Observed
w Given text Observed
T Synthesized speech Unobserved
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Probabilistic formulation of TTS

Random variables

X Speech waveforms (data) Observed

W Transcriptions (data) Observed

w Given text Observed

T Synthesized speech Unobserved
Synthesis
e Estimate posterior predictive distribution @

— plz | w,X,W)

e Sample & from the posterior distribution e
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Probabilistic formulation

Introduce auxiliary variables (representation) + factorize dependency

plx | w, X, W) = x| o)plo|1l,\)p(l | w)
s

p(X | O)p(O | L, \)p(\)p(L | W)/ p(X) }dodOdA
where

O, o: Acoustic features
L,1: Linguistic features
A Model

Andrew Senior Generative Model-Based Text-to-Speech Synthesis 10 of 50



Approximation (1)

Approximate {sum & integral} by best point estimates (like MAP) [3]

p(w | w7X7W) %p(:lt | 6)
where

{o, 1,O,L, 5\} = arg max {
0,l,0,L,\

p(z | o)plo | 1, \)p(l | w)
p(X | O)p(O | £, \)p(Np(L | W)}
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Approximation (2)

Joint — Step-by-step maximization [3]

O = argmax p(X | O) Extract acoustic features
@

L = argmaxp(L | W) Extract linguistic features
L

A =argmaxp(O | £, \)p(\) Learn mapping
A

[ = argmaxp(l | w) Predict linguistic features
l

6 = argmaxp(o | I, )) Predict acoustic features
o

x ~ fz(0) =p(x | 0) Synthesize waveform
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Approximation (2)

Joint — Step-by-step maximization [3]

O = argmax p(X | O) Extract acoustic features g
o
L = argmaxp(L | W)
c
©

A =argmax p(O | £, \)p()\)
A

:
I =argmaxp(l | w) @)\
l

°
z ~ f2(0) = plx | 9)
e
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Approximation (2)

Joint — Step-by-step maximization [3]

O = argmax p(X | O) Extract acoustic features g
@
L = argmaxp(L | W) Extract linguistic features a
L ~
©)

A =argmax p(O | £, \)p()\)
A

ole

[ = argmaxp(l | w)
l

o

@ ~ f2(6) = p(z | 0)

s ©-Q
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Approximation (2)

Joint — Step-by-step maximization [3]

O = argmax p(X | O) Extract acoustic features g
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Approximation (2)

Joint — Step-by-step maximization [3]
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Approximation (2)

Joint — Step-by-step maximization [3]

O = argmax p(X | O) Extract acoustic features
o

L = argmaxp(L | W) Extract linguistic features
L

A =argmaxp(O | £, \)p(\) Learn mapping
A

CllOn®)
5| E-E
| EE

[ = argmaxp(l | w) Predict linguistic features
l

6 = argmaxp(o | I, )) Predict acoustic features

o

T ~ f2(6) =p(z | 0)

-0l

"
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Approximation (2)

Joint — Step-by-step maximization [3]

O = arg énax p(X | O) Extract acoustic features

L =arg Znax p(L|W) Extract linguistic features

A= arg/r\naxp(@ ] L, A)p(A) Learn mapping

[ =arg ;naxp(l | w) Predict linguistic features

6 = argmaxp(o | I, )) Predict acoustic features
o

x ~ fo(0) =p(x | 0) Synthesize waveform
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Approximation (2)

Joint — Step-by-step maximization [3]

O = arg énax p(X | O) Extract acoustic features
L =arg Znax p(L | W) Extract linguistic features i ]
A= arg/r\naxp(@ ] L, A)p(A) Learn mapping @o
[ =arg ;nax p(l | w) Predict linguistic features CT)\
6 = argmaxp(o | I, )) Predict acoustic features ©

o
x ~ fz(0) =p(x | 0) Synthesize waveform

Representations: acoustic, linguistic, mapping

s ©-Q
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Representation — Linguistic features

Hello, world.

/\

Hello, world.

hello world

l-ou1 w-er1-I-d

h-e2
/\
h e

| ou w er |

Andrew Senior

d

Generative Model-Based Text-to-Speech Synthesis

Sentence: length, ...
Phrase: intonation, ...
Word: POS, grammarr, ...

Syllable: stress, tone, ...

Phone: voicing, manner, ...
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Representation — Linguistic features

Hello, world.

/\

Hello, world.

hello world
h-e2 l-ou1 w-er1-I-d

AN N

h e | ou w er |

Sentence: length, ...
Phrase: intonation, ...
Word: POS, grammarr, ...

Syllable: stress, tone, ...

Phone: voicing, manner, ...

— Based on knowledge about spoken language

e lexicon, letter-to-sound rules
e Tokenizer, tagger, parser

e Phonology rules

Andrew Senior
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Representation — Acoustic features

Duration model

e Typically run a parametric synthesizer on frames (e.g. 5ms windows)
e Need to know how many frames each phonetic unit lasts.

e Model this separately e.g. FFNN linguistic features — duration.
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Representation — Acoustic features

Piece-wise stationary, source-filter generative model p(x | 0)

Vocal source Vocal tract filter

Pulse train (voiced)

Ll 1]

Cepstrum, LPC, ... L overlap/shift

Fundamental ~ _ » \_1_1 windowing
frequency %-‘3

38 . — Speech

&g e(n)

P z(n) = h(n)*e(n)
N 0 8 [kHz]

s

White noise (unvoiced)

Q)
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Representation — Acoustic features

Piece-wise stationary, source-filter generative model p(x | 0)

Vocal source Vocal tract filter

Pulse train (voiced)

LLELU_L Cepstrum, LPC, ... L overlap/shift
Fundamental ~ _ » \_1_1 windowing
frequency 3B

o = ) f-—

38 . sl Mg — Speech

@ e(n) ‘

P2 @(n) = h(n)*e(n)

= o 8 [kHz]

P o

White noise (unvoiced)

— Needs to solve inverse problem
e Estimate parameters from signals
e Use estimated parameters (e.g., cepstrum) as acoustic features .Q
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Representation — Mapping

Rule-based, formant synthesis [1]

O = argmax p(X | 0) Vocoder analysis g
o
L = argmaxp(L | W) Text analysis ]
c -
©

A =argmaxp(O | £, \)p(\) Extract rules
A

ola

I = argmaxp(l | w) Text analysis
l
6 = argmaxp(o | l, ;\) Apply rules O,
’ ©
T~ fp(0) =p(x|o0) Vocoder synthesis :
@
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Representation — Mapping

Rule-based, formant synthesis [1]

O = argmax p(X | 0) Vocoder analysis g
o
L = argmaxp(L | W) Text analysis ]
c -
©

A =argmaxp(O | £, \)p(\) Extract rules
A

ola

I = argmaxp(l | w) Text analysis
l
6 = argmaxp(o | l, ;\) Apply rules O,
’ ©
T~ fp(0) =p(x|o0) Vocoder synthesis :
O
— Hand-crafted rules on knowledge-based features e
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Representation — Mapping

HMM-based [4], statistical parametric synthesis [5]

O = argmax p(X | O) Vocoder analysis
@

L = argmaxp(L | W) Text analysis
c

Oe-®
H
=1z

=|(=

A =argmaxp(O | £,\)p()) Train HMMs

I = argmaxp(l | w) Text analysis
6 = argmaxp(o | I, ) Parameter generation

I . .
T~ fp(0) =p(x|o0) Vocoder synthesis
@
(]
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Representation — Mapping

HMM-based [4], statistical parametric synthesis [5]

O = argmax p(X | 0) Vocoder analysis g
@
L = argmaxp(L | W) Text analysis ]
L ~
©)

A =argmaxp(O | £,\)p()) Train HMMs

I = argmaxp(l | w) Text analysis

6 = argmaxp(o | I, ) Parameter generation
o

T~ fp(0) =p(x|o0) Vocoder synthesis

— Replace rules by HMM-based generative acoustic model e

Andrew Senior Generative Model-Based Text-to-Speech Synthesis 17 of 50



Outline

Generative acoustic models for parametric TTS
Hidden Markov models (HMMs)



HMM-based generative acoustic model for TTS

e Context-dependent subword HMMs
e Decision trees to cluster & tie HMM states — interpretable

plo]| LX) ZHp ot | g, \)P(q |l,\) ¢ hidden state at ¢
Vq t=1

T
=3 TN (o o, £4)Pla | 1. 2)

Vg t=1 (]
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HMM-based generative acoustic model for TTS

e Non-smooth, step-wise statistics
— Smoothing is essential

e Difficult to use high-dimensional acoustic features (e.g., raw spectra)
— Use low-dimensional features (e.g., cepstra)

e Data fragmentation
— Ineffective, local representation

A lot of research work have been done to address these issues
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Outline

Generative acoustic models for parametric TTS

Neural networks



Alternative acoustic model

HMM: Handle variable length & alignment
Decision tree: Map linguistic — acoustic

Linguistic features

Statistics of acoustic features o

Regression tree: linguistic features — Stats. of acoustic features
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Alternative acoustic model

HMM: Handle variable length & alignment
Decision tree: Map linguistic — acoustic

Linguistic features

Statistics of acoustic features o

Regression tree: linguistic features — Stats. of acoustic features

Replace the tree w/ a general-purpose regression model
— Artificial neural network Qe
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FFNN-based acoustic model for TTS [6]

Target
Frame-level acoustic feature 0, 0;_1 oy 0441

Frame-level linguistic feature [, b1 b b
Input
hi = g (Wil + by,) A =argmin ) [lo; — 6|2
A
t
61& — Wohht + bo A= {Whh Wo}u bh7 bo}

0; ~ E [0 | l] — Replace decision trees & Gaussian distributions
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RNN-based acoustic model for TTS [7]

Target
Frame-level acoustic feature 0;  o0,_; oy 0441

Recurrent
connections

Frame-level linguistic feature [, bt L b

Input
h = g Whli + Wiphi—1 + bp,) A= arg;ninZHot — 0¢|2
¢
oy = Wy hy + b, A = {Whi, Wi, Wen, by, b, }

. R Q
FFENN: 6; ~E[o: | l;] RNN: o, ~E[o;|l1,..., 1] Q
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NN-based generative acoustic model for TTS

e Non-smooth, step-wise statistics
— RNN predicts smoothly varying acoustic features [7, 8]

e Difficult to use high-dimensional acoustic features (e.g., raw spectra)
— Layered architecture can handle high-dimensional features [9]

e Data fragmentation
— Distributed representation [10]
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NN-based generative acoustic model for TTS

e Non-smooth, step-wise statistics
— RNN predicts smoothly varying acoustic features [7, 8]

e Difficult to use high-dimensional acoustic features (e.g., raw spectra)
— Layered architecture can handle high-dimensional features [9]

e Data fragmentation
— Distributed representation [10]

NN-based approach is now mainstream in research & products

e Models: FFNN [6], MDN [11], RNN [7], Highway network [12], GAN
[13]
e Products: e.g., Google [14]
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NN-based generative model for TTS

text
(concept)

3
3 frequency speech
2o | yansfer | ——mmme
-5 ransfer
-g s characteristics
8E
“ S ]
Sg magnitude
S<c start-end  -——mem
29 —---—--—— Sound source
2 @ fundamental _______. voiced: pulse
| :
g % frequency unvoiced: noise
air flow
Text — Linguistic — (Articulatory) — Acoustic — Waveform e
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Outline

Beyond parametric TTS
Learned features



Knowledge-based features — Learned features

Unsupervised feature learning

w(n+1)

oM

a
[0000000000000000000100]

N Linguistic
feature
I(n-1) U(n)

[0000000000100000000000]
=

[JIEL

z(t) w(n)
(raw FFT spectrum) (1-hot representation of word)

e Speech: auto-encoder at FFT spectra [9, 15] — positive results
e Text: word [16], phone & syllable [17] — less positive
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Relax approximation

Joint acoustic feature extraction & model training

Two-step optimization — Joint optimization

A~

O = argmaxp(X | O)
@

= J==]

A =argmax p(O | £, \)p()\)
A

U
(4.0} = argmaxp( | 0)p(O | £, 0p()
Joint source-filter & acoustic model optimization ()

e HMM [18, 19, 20]
O,

o NN [21, 22]
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Relax approximation

Joint acoustic feature extracion & model training

Mixed-phase cepstral analysis + LSTM-RNN [22]

Py

A oo e
Pulse train T
PR e,
’mmw : 2 T T T
Speech | |
Lo 1
P [ TR C
Cepstrum |—‘zz=---c-------ooo-ooooo Derivatives

Back propagation

Linguistic
features
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Outline

Beyond parametric TTS

WaveNet



Relax approximation

Direct mapping from linguistic to waveform

No explicit acoustic features
{0} = argmaxp(¥ | O)p(O | L, \)p(\)
U

A =argmaxp(X | L, \)p(\)
A

Generative models for raw audio
e LPC [23]

e WaveNet [24]

e SampleRNN [25]

Andrew Senior Generative Model-Based Text-to-Speech Synthesis
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WaveNet: A generative model for raw audio

Autoregressive (AR) modelling of speech signals

x = {xo,x1,...,xN-1} : raw waveform

N-1
p(x | A) =p(xo,1,...,2n-1 | \) = H p(xn | Toy -y Tn_1,\)
n=0
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WaveNet: A generative model for raw audio

Autoregressive (AR) modelling of speech signals

x = {xo,x1,...,xN-1} : raw waveform
N-1
p(x | ) =plxo,x1,...,2N8-1 | A) = H p(Tn | oy, Tn-1,\)
n=0

WaveNet [24]
— p(ay, | xo, ..., xy—1,A) is modeled by convolutional NN

Andrew Senior Generative Model-Based Text-to-Speech Synthesis 33 of 50



WaveNet: A generative model for raw audio

Autoregressive (AR) modelling of speech signals

x = {xo,x1,...,xN-1} : raw waveform

N-1
p(x | A) =p(xo, 21,...,aN-1 | A) = H p(xn | o, ..., Tn_1,A)

n=0

WaveNet [24]
— p(ay, | xo, ..., xy—1,A) is modeled by convolutional NN

Key components
e Causal dilated convolution: capture long-term dependency
e Gated convolution + residual + skip: powerful non-linearity

e Softmax at output: classification rather than regression
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WaveNet — Causal dilated convolution

100ms in 16kHz sampling = 1,600 time steps
— Too long to be captured by normal RNN/LSTM

Dilated convolution
Exponentially increase receptive field size w.r.t. # of layers

P(T0 | 2y ey Tt

Output ®© ®©0 000 00000 0 0 0

Hidden
layer3

Hidden
layer2

Hidden
- % . % . .
Input ./ ./

xX

n-16 Tpg Tpo Tpy
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WaveNet — Non-linearity

IS
%
Residual block IR
A 2 |25
Residual block = o P(%me Ty )
— g e 256 ";g o 256 3
[ ]2%0 < < &
Residual block X
T
P
Residual block X &
L&

Skip connections

@: 1x1 conv

Residual block | : 2x1 dilated conv — Gated activation — 1x1 Conv + Residual connection
‘Y

Andrew Senior Generative Model-Based Text-to-Speech Synthesis 35 of 50



WaveNet — Softmax

apnydwy

Time

Analog audio signal
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WaveNet — Softmax

apnydwy

Time

Sampling & Quantization
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WaveNet — Softmax

apnydwy

Category index
e
ﬂT

16 [T
Time

Categorical distribution — Histogram
- Unimodal
- Multimodal
- Skewed
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WaveNet — Softmax

apnydwy

Category index
e
ﬂT

16 [T
Time

Categorical distribution — Histogram

- Unimodal
- Multimodal Prof. D. Jurafsky - “Now TTS is
- Skewed the same problem as language

modeling!”
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WaveNet — Conditional modelling

p(ny, | Ly geeey g2y hm )\)

Linguistic features W5

{ Cowy
Embedding h o W -
at time n SN 3 —
™ W2
Res. block
p W]_ IJ__]
Ly Ty Ly0 Ty
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WaveNet vs conventional audio generative models

Assumptions in conventional audio generative models

[23, 26, 27, 22]

e Stationary process w/ fixed-length analysis window
— Estimate model within 20-30ms window w/ 5-10 shift

e Linear, time-invariant filter within a frame
— Relationship between samples can be non-linear

e Gaussian process
— Assumes speech signals are normally distributed

WaveNet
e Sample-by-saple, non-linear, capable to take additional inputs

e Arbitrary-shaped signal distribution

SOTA subjective naturalness w/ WaveNet-based TTS [24]
HMM ®)  LSTM %) Concatenative ®)  WaveNet ) e
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Outline

Beyond parametric TTS

End-to-end



Relax approximation
Towards Bayesian end-to-end TTS

Integrated end-to-end

£ = argmaxp(L | W W

: g1 p(L | A) O

A =argmaxp(X | L, \)p(A)
A

! ©

A =argmax p(X | W, A\)p(A)
A

Text analysis is integrated to model
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Relax approximation
Towards Bayesian end-to-end TTS

Bayesian end-to-end

A =argmax p(X | W, A)p(A)
A
T~ fz(w,\) =p(x | w,\)

(8
T~ fo(w, X, W) =p(x|w,X,W)

—

p(@ | w, \)p(A | X, W)dA

%

K

1 .

% E plx | w, ;) < Ensemble
k=1

Marginalize model parameters & architecture e
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Generative model-based text-to-speech synthesis

e Bayes formulation + factorization + approximations

e Representation: acoustic features, linguistic features, mapping

— Mapping: Rules - HMM — NN
— Feature: Engineered — Unsupervised, learned

e |ess approximations

— Joint training, direct waveform modelling
— Moving towards integrated & Bayesian end-to-end TTS

Naturalness: Concatenative < Generative

Flexibility: Concatenative < Generative (e.g., multiple speakers)
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Beyond “text”-to-speech synthesis

TTS on conversational assistants

e Texts aren't fully contained

e Need more context

— Location to resolve homographs
— User query to put right emphasis

"
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Beyond “text”-to-speech synthesis

TTS on conversational assistants

e Texts aren't fully contained

e Need more context
— Location to resolve homographs
— User query to put right emphasis .'

We need representation that can
organize the world information & make it accessible & useful

from TTS generative models

"
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Beyond “generative” TTS

Generative model-based TTS

e Model represents process behind speech production

— Trained to minimize error against human-produced speech
— Learned model — speaker
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Beyond “generative” TTS

Generative model-based TTS

e Model represents process behind speech production

— Trained to minimize error against human-produced speech
— Learned model — speaker

e Speech is for communication
— Goal: maximize the amount of information to be received

Missing “listener”

— “listener” in training / model itself?

Andrew Senior Generative Model-Based Text-to-Speech Synthesis 44 of 50



Thanks!

\&Ry
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(1) Bayesian (2) Auxiliary variables (3) Joint maximization (4) Step-by-step maximization
+ factorization e.g., statistical parametric TTS

ea
© &

(5) Joint acoustic feature (6) Conditional WaveNet (7) Integrated end-to-end (8) Bayesian end-to-end

extraction + model training -based TTS Qe
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