

Generative Model-Based Text-to-Speech Synthesis

Andrew Senior (DeepMind London) Many thanks to Heiga Zen February 23rd, 2017@Oxford

Outline

Generative TTS

Generative acoustic models for parametric TTS

Hidden Markov models (HMMs) Neural networks

Beyond parametric TTS

Learned features WaveNet End-to-end

Conclusion & future topics

Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)

Text-to-speech synthesis (TTS)

"Take the first left" \rightarrow

Speech production process

Andrew Senior

Typical flow of TTS system

Andrew Senior

Sample-based, concatenative synthesis [2]

Unit selection concatenative speech synthesis

- Build a database with wide linguistic diversity.
- Forced align and chop up into diphones.
- For a new utterance, choose units matching the diphone sequence.
- Minimize total cost by greedy search.
- Cost = $\sum_i U(i) + J(i, i-1)$
- Splice together adjacent units matching up last pitch period.

TTS databases

- Want high quality,
 - Studio recording
 - $-\,$ Controlled, consistent conditions
 - No background noise
 - Single (professional) speaker
- Typically read speech

- VCTK (Voice Cloning Tool Kit)
 - 109 native speakers of English 400 sentences. 96kHz 24 bits
 - Intended for *adaptation* of an average voice.
- Google TTS 10s of hours
- Edingburgh Merlin system https://github.com/CSTR-Edinburgh/merlin

TTS performance metrics

- TTS performance is subjective.
- Intelligibility (in noise)
- Naturalness
 - Mean Opinion Score (5 point scale)
 - $-\$ A/B preference tests.
 - $-\,$ e.g. Amazon Mechanical Turk 100 utterances 5–7 tests per sample
 - $-\,$ Care needed to control for human factors.
- Objective measures
 - PESQ
 - Robust MOS

Probabilistic formulation of TTS

Random variables

\mathcal{X}	Speech waveforms (data)
\mathcal{W}	Transcriptions (data)
w	Given text
x	Synthesized speech

Observed Observed Observed Unobserved

Probabilistic formulation of TTS

Random variables

\mathcal{X}	Speech waveforms (data)
\mathcal{W}	Transcriptions (data)
w	Given text
x	Synthesized speech

Observed Observed Observed Unobserved

Synthesis

- Estimate posterior predictive distribution $\rightarrow p(\pmb{x} \mid \pmb{w}, \mathcal{X}, \mathcal{W})$
- Sample $ar{x}$ from the posterior distribution

Probabilistic formulation

Introduce auxiliary variables (representation) + factorize dependency

$$\begin{split} p(\boldsymbol{x} \mid \boldsymbol{w}, \mathcal{X}, \mathcal{W}) &= \iiint \sum_{\forall \boldsymbol{l}} \sum_{\forall \mathcal{L}} \left\{ p(\boldsymbol{x} \mid \boldsymbol{o}) p(\boldsymbol{o} \mid \boldsymbol{l}, \lambda) p(\boldsymbol{l} \mid \boldsymbol{w}) \right. \\ & \left. p(\mathcal{X} \mid \mathcal{O}) p(\mathcal{O} \mid \mathcal{L}, \lambda) p(\lambda) p(\mathcal{L} \mid \mathcal{W}) / p(\mathcal{X}) \right\} d\boldsymbol{o} d\mathcal{O} d\lambda \end{split}$$

where

O, o: Acoustic features
 L, l: Linguistic features
 λ: Model

Approximate {sum & integral} by best point estimates (like MAP) [3]

$$p(\boldsymbol{x} \mid \boldsymbol{w}, \mathcal{X}, \mathcal{W}) \approx p(\boldsymbol{x} \mid \hat{\boldsymbol{o}})$$

where

 $\{ \hat{\boldsymbol{o}}, \hat{\boldsymbol{l}}, \hat{\mathcal{O}}, \hat{\mathcal{L}}, \hat{\lambda} \} = \underset{\boldsymbol{o}, \boldsymbol{l}, \mathcal{O}, \mathcal{L}, \lambda}{\arg \max} \{ p(\boldsymbol{x} \mid \boldsymbol{o}) p(\boldsymbol{o} \mid \boldsymbol{l}, \lambda) p(\boldsymbol{l} \mid \boldsymbol{w}) \\ p(\mathcal{X} \mid \mathcal{O}) p(\mathcal{O} \mid \mathcal{L}, \lambda) p(\lambda) p(\mathcal{L} \mid \mathcal{W}) \}$

11 of 50

Joint \rightarrow Step-by-step maximization [3]

$$\begin{split} \hat{\mathcal{O}} &= \arg \max_{\mathcal{O}} p(\mathcal{X} \mid \mathcal{O}) & \text{Extract acoustic features} \\ \hat{\mathcal{L}} &= \arg \max_{\mathcal{L}} p(\mathcal{L} \mid \mathcal{W}) & \text{Extract linguistic features} \\ \hat{\lambda} &= \arg \max_{\lambda} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda) & \text{Learn mapping} \\ \hat{l} &= \arg \max_{l} p(l \mid w) & \text{Predict linguistic features} \\ \hat{o} &= \arg \max_{o} p(o \mid \hat{l}, \hat{\lambda}) & \text{Predict acoustic features} \\ \bar{x} \sim f_{x}(\hat{o}) &= p(x \mid \hat{o}) & \text{Synthesize waveform} \end{split}$$

(

Joint \rightarrow Step-by-step maximization [3]

$$\hat{\mathcal{O}} = \underset{\mathcal{O}}{\arg\max} p(\mathcal{X} \mid \mathcal{O})$$
$$\hat{\mathcal{L}} = \underset{\mathcal{L}}{\arg\max} p(\mathcal{L} \mid \mathcal{W})$$
$$\hat{\lambda} = \underset{\lambda}{\arg\max} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda)$$
$$\hat{l} = \underset{l}{\arg\max} p(l \mid w)$$
$$\hat{o} = \underset{o}{\arg\max} p(o \mid \hat{l}, \hat{\lambda})$$
$$\bar{x} \sim f_{x}(\hat{o}) = p(x \mid \hat{o})$$

Extract acoustic features

Joint \rightarrow Step-by-step maximization [3]

$$\begin{split} \hat{\mathcal{O}} &= \underset{\mathcal{O}}{\arg\max} p(\mathcal{X} \mid \mathcal{O}) & \text{Extract acoustic features} \\ \hat{\mathcal{L}} &= \underset{\mathcal{L}}{\arg\max} p(\mathcal{L} \mid \mathcal{W}) & \text{Extract linguistic features} \\ \hat{\lambda} &= \underset{\lambda}{\arg\max} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda) \\ \hat{l} &= \underset{l}{\arg\max} p(l \mid w) \\ \hat{o} &= \underset{o}{\arg\max} p(o \mid \hat{l}, \hat{\lambda}) \\ \bar{x} &\sim f_{x}(\hat{o}) = p(x \mid \hat{o}) \end{split}$$

Andrew Senior

$$\hat{\mathcal{O}} = \underset{\mathcal{O}}{\operatorname{arg\,max}} p(\mathcal{X} \mid \mathcal{O})$$
 Extract acoustic features

$$\hat{\mathcal{L}} = \underset{\mathcal{L}}{\operatorname{arg\,max}} p(\mathcal{L} \mid \mathcal{W})$$
 Extract linguistic features

$$\hat{\lambda} = \underset{\lambda}{\operatorname{arg\,max}} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda)$$
 Learn mapping

$$\hat{l} = \underset{l}{\operatorname{arg\,max}} p(l \mid w)$$

$$\hat{o} = \underset{o}{\operatorname{arg\,max}} p(o \mid \hat{l}, \hat{\lambda})$$

$$\bar{x} \sim f_{x}(\hat{o}) = p(x \mid \hat{o})$$

$$\hat{\mathcal{O}} = \arg \max_{\mathcal{O}} p(\mathcal{X} \mid \mathcal{O})$$
Extract acoustic features
$$\hat{\mathcal{L}} = \arg \max_{\mathcal{L}} p(\mathcal{L} \mid \mathcal{W})$$
Extract linguistic features
$$\hat{\lambda} = \arg \max_{\lambda} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda)$$
Learn mapping
$$\hat{l} = \arg \max_{l} p(l \mid w)$$
Predict linguistic features
$$\hat{o} = \arg \max_{o} p(o \mid \hat{l}, \hat{\lambda})$$

$$\bar{x} \sim f_{x}(\hat{o}) = p(x \mid \hat{o})$$

$$\hat{\mathcal{O}} = \arg \max_{\mathcal{O}} p(\mathcal{X} \mid \mathcal{O})$$
Extract acoustic features
$$\hat{\mathcal{L}} = \arg \max_{\mathcal{L}} p(\mathcal{L} \mid \mathcal{W})$$
Extract linguistic features
$$\hat{\lambda} = \arg \max_{\lambda} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda)$$
Learn mapping
$$\hat{l} = \arg \max_{l} p(l \mid w)$$
Predict linguistic features
$$\hat{o} = \arg \max_{o} p(o \mid \hat{l}, \hat{\lambda})$$
Predict acoustic features
$$\hat{x} \sim f_{x}(\hat{o}) = p(x \mid \hat{o})$$

$$\hat{\mathcal{O}} = \underset{\mathcal{O}}{\operatorname{arg\,max}} p(\mathcal{X} \mid \mathcal{O})$$
 Extract *acoustic features*

$$\hat{\mathcal{L}} = \underset{\mathcal{L}}{\operatorname{arg\,max}} p(\mathcal{L} \mid \mathcal{W})$$
 Extract *linguistic features*

$$\hat{\lambda} = \underset{\lambda}{\operatorname{arg\,max}} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda)$$
 Learn *mapping*

$$\hat{l} = \underset{l}{\operatorname{arg\,max}} p(l \mid w)$$
 Predict *linguistic features*

$$\hat{o} = \underset{o}{\operatorname{arg\,max}} p(o \mid \hat{l}, \hat{\lambda})$$
 Predict *acoustic features*

$$\hat{x} \sim f_{x}(\hat{o}) = p(x \mid \hat{o})$$
 Synthesize waveform

Joint \rightarrow Step-by-step maximization [3]

$$\hat{\mathcal{O}} = \arg \max_{\mathcal{O}} p(\mathcal{X} \mid \mathcal{O})$$
Extract acoustic features
$$\hat{\mathcal{L}} = \arg \max_{\mathcal{L}} p(\mathcal{L} \mid \mathcal{W})$$
Extract linguistic features
$$\hat{\lambda} = \arg \max_{\lambda} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda)$$
Learn mapping
$$\hat{l} = \arg \max_{l} p(l \mid w)$$
Predict linguistic features
$$\hat{o} = \arg \max_{o} p(o \mid \hat{l}, \hat{\lambda})$$
Predict acoustic features
$$\bar{x} \sim f_{x}(\hat{o}) = p(x \mid \hat{o})$$
Synthesize waveform

Representations: acoustic, linguistic, mapping

Representation – Linguistic features

Representation – Linguistic features

 \rightarrow Based on knowledge about spoken language

- Lexicon, letter-to-sound rules
- Tokenizer, tagger, parser
- Phonology rules

Andrew Senior

Duration model

- Typically run a parametric synthesizer on frames (e.g. 5ms windows)
- Need to know how many frames each phonetic unit lasts.
- $\bullet\,$ Model this separately e.g. FFNN linguistic features \rightarrow duration.

Representation – Acoustic features

Piece-wise stationary, source-filter generative model $p(\boldsymbol{x} \mid \boldsymbol{o})$

Representation – Acoustic features

Piece-wise stationary, source-filter generative model $p(\boldsymbol{x} \mid \boldsymbol{o})$

\rightarrow Needs to solve inverse problem

- Estimate parameters from signals
- Use estimated parameters (e.g., cepstrum) as acoustic features

Andrew Senior

Rule-based, formant synthesis [1]

$$\begin{split} \hat{\mathcal{O}} &= \mathop{\arg\max}_{\mathcal{O}} p(\mathcal{X} \mid \mathcal{O}) & \text{Vocoder analysis} \\ \hat{\mathcal{L}} &= \mathop{\arg\max}_{\mathcal{L}} p(\mathcal{L} \mid \mathcal{W}) & \text{Text analysis} \\ \hat{\lambda} &= \mathop{\arg\max}_{\lambda} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda) & \text{Extract rules} \\ \hat{l} &= \mathop{\arg\max}_{l} p(l \mid w) & \text{Text analysis} \\ \hat{o} &= \mathop{\arg\max}_{o} p(o \mid \hat{l}, \hat{\lambda}) & \text{Apply rules} \\ \bar{x} \sim f_{x}(\hat{o}) &= p(x \mid \hat{o}) & \text{Vocoder synthesis} \end{split}$$

Andrew Senior

Rule-based, formant synthesis [1]

$$\hat{\mathcal{O}} = \arg \max_{\mathcal{O}} p(\mathcal{X} \mid \mathcal{O})$$
 Vocoder analysis

$$\hat{\mathcal{L}} = \arg \max_{\mathcal{L}} p(\mathcal{L} \mid \mathcal{W})$$
 Text analysis

$$\hat{\lambda} = \arg \max_{\lambda} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda)$$
 Extract rules

$$\hat{l} = \arg \max_{\lambda} p(l \mid w)$$
 Text analysis

$$\hat{o} = \arg \max_{o} p(o \mid \hat{l}, \hat{\lambda})$$
 Apply rules

$$\bar{x} \sim f_{x}(\hat{o}) = p(x \mid \hat{o})$$
 Vocoder synthesis

 \rightarrow Hand-crafted rules on knowledge-based features

Andrew Senior

HMM-based [4], statistical parametric synthesis [5]

$$\begin{split} \hat{\mathcal{O}} &= \mathop{\arg\max}_{\mathcal{O}} p(\mathcal{X} \mid \mathcal{O}) & \text{Vocoder analysis} \\ \hat{\mathcal{L}} &= \mathop{\arg\max}_{\mathcal{L}} p(\mathcal{L} \mid \mathcal{W}) & \text{Text analysis} \\ \hat{\lambda} &= \mathop{\arg\max}_{\lambda} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda) & \text{Train HMMs} \\ \hat{l} &= \mathop{\arg\max}_{l} p(l \mid w) & \text{Text analysis} \\ \hat{o} &= \mathop{\arg\max}_{l} p(o \mid \hat{l}, \hat{\lambda}) & \text{Parameter generation} \\ \bar{x} \sim f_{x}(\hat{o}) &= p(x \mid \hat{o}) & \text{Vocoder synthesis} \end{split}$$

17 of 50

HMM-based [4], statistical parametric synthesis [5]

$$\hat{\mathcal{O}} = \underset{\mathcal{O}}{\operatorname{arg\,max}} p(\mathcal{X} \mid \mathcal{O}) \qquad \text{Vocoder analysis}$$

$$\hat{\mathcal{L}} = \underset{\mathcal{L}}{\operatorname{arg\,max}} p(\mathcal{L} \mid \mathcal{W}) \qquad \text{Text analysis}$$

$$\hat{\lambda} = \underset{\lambda}{\operatorname{arg\,max}} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda) \qquad \text{Train HMMs}$$

$$\hat{l} = \underset{l}{\operatorname{arg\,max}} p(l \mid w) \qquad \text{Text analysis}$$

$$\hat{o} = \underset{o}{\operatorname{arg\,max}} p(o \mid \hat{l}, \hat{\lambda}) \qquad \text{Parameter generation}$$

$$\bar{x} \sim f_{x}(\hat{o}) = p(x \mid \hat{o}) \qquad \text{Vocoder synthesis}$$

 \rightarrow Replace rules by HMM-based generative acoustic model

17 of 50

Outline

Generative TTS

Generative acoustic models for parametric TTS

Hidden Markov models (HMMs)

Neural networks

Beyond parametric TTS

Learned features WaveNet End-to-end

Conclusion & future topics

HMM-based generative acoustic model for TTS

- Context-dependent subword HMMs
- Decision trees to cluster & tie HMM states \rightarrow *interpretable*

$$\begin{split} p(\boldsymbol{o} \mid \boldsymbol{l}, \lambda) &= \sum_{\forall \boldsymbol{q}} \prod_{t=1}^{T} p(\boldsymbol{o}_t \mid q_t, \lambda) P(\boldsymbol{q} \mid \boldsymbol{l}, \lambda) \quad q_t: \text{ hidden state at } t \\ &= \sum_{\forall \boldsymbol{q}} \prod_{t=1}^{T} \mathcal{N}(\boldsymbol{o}_t; \boldsymbol{\mu}_{q_t}, \boldsymbol{\Sigma}_{q_t}) P(\boldsymbol{q} \mid \boldsymbol{l}, \lambda) \end{split}$$

Generative Model-Based Text-to-Speech Synthesis

19 of 50
HMM-based generative acoustic model for TTS

- Non-smooth, step-wise statistics \rightarrow Smoothing is essential
- Difficult to use high-dimensional acoustic features (e.g., raw spectra)
 → Use low-dimensional features (e.g., cepstra)
- Data fragmentation

 \rightarrow Ineffective, local representation

A lot of research work have been done to address these issues

Outline

Generative TTS

Generative acoustic models for parametric TTS

Hidden Markov models (HMMs) Neural networks

Beyond parametric TTS

Learned features WaveNet End-to-end

Conclusion & future topics

Alternative acoustic model

HMM: Handle variable length & alignment **Decision tree:** Map linguistic \rightarrow acoustic

Regression tree: linguistic features \rightarrow Stats. of acoustic features

Andrew Senior

Alternative acoustic model

HMM: Handle variable length & alignment **Decision tree:** Map linguistic \rightarrow acoustic

Regression tree: linguistic features \rightarrow Stats. of acoustic features Replace the tree w/ a general-purpose regression model \rightarrow Artificial neural network

FFNN-based acoustic model for TTS [6]

$$h_t = g \left(\mathbf{W}_{hl} \mathbf{l}_t + \mathbf{b}_h \right) \qquad \hat{\lambda} = \arg\min_{\lambda} \sum_t \| \mathbf{o}_t - \hat{\mathbf{o}}_t \|_2$$
$$\hat{\mathbf{o}}_t = \mathbf{W}_{oh} \mathbf{h}_t + \mathbf{b}_o \qquad \lambda = \{ \mathbf{W}_{hl}, \mathbf{W}_{oh}, \mathbf{b}_h, \mathbf{b}_o \}$$

 $\hat{o}_t pprox \mathbb{E}\left[o_t \mid l_t
ight]
ightarrow$ Replace decision trees & Gaussian distributions

Andrew Senior

RNN-based acoustic model for TTS [7]

$$h_t = g \left(\mathbf{W}_{hl} \mathbf{l}_t + \mathbf{W}_{hh} \mathbf{h}_{t-1} + \mathbf{b}_h \right) \qquad \hat{\lambda} = \arg \min_{\lambda} \sum_t \| \mathbf{o}_t - \hat{\mathbf{o}}_t \|_2$$
$$\hat{\mathbf{o}}_t = \mathbf{W}_{oh} \mathbf{h}_t + \mathbf{b}_o \qquad \lambda = \{ \mathbf{W}_{hl}, \mathbf{W}_{hh}, \mathbf{W}_{oh}, \mathbf{b}_h, \mathbf{b}_o \}$$

FFNN: $\hat{o}_t \approx \mathbb{E}[o_t | l_t]$ RNN: $\hat{o}_t \approx \mathbb{E}[o_t | l_1, \dots, l_t]$

24 of 50

Andrew Senior

NN-based generative acoustic model for TTS

- Non-smooth, step-wise statistics
 → RNN predicts smoothly varying acoustic features [7, 8]
- Difficult to use high-dimensional acoustic features (e.g., raw spectra) \rightarrow Layered architecture can handle high-dimensional features [9]
- Data fragmentation
 - \rightarrow Distributed representation [10]

NN-based generative acoustic model for TTS

- Non-smooth, step-wise statistics \rightarrow RNN predicts smoothly varying acoustic features [7, 8]
- Difficult to use high-dimensional acoustic features (e.g., raw spectra) \rightarrow Layered architecture can handle high-dimensional features [9]
- Data fragmentation
 - \rightarrow Distributed representation [10]

NN-based approach is now mainstream in research & products

- Models: FFNN [6], MDN [11], RNN [7], Highway network [12], GAN [13]
- Products: e.g., Google [14]

Andrew Senior

NN-based generative model for TTS

$\mathsf{Text} \to \mathsf{Linguistic} \to (\mathsf{Articulatory}) \to \mathsf{Acoustic} \to \mathsf{Waveform}$

Andrew Senior

Outline

Generative TTS

Generative acoustic models for parametric TTS

Hidden Markov models (HMMs) Neural networks

Beyond parametric TTS

Learned features

WaveNet End-to-end

Conclusion & future topics

Knowledge-based features \rightarrow Learned features

Unsupervised feature learning

- Speech: auto-encoder at FFT spectra [9, 15] \rightarrow positive results
- Text: word [16], phone & syllable [17] \rightarrow less positive

Andrew Senior

Relax approximation

Joint acoustic feature extraction & model training

Two-step optimization \rightarrow Joint optimization

$$\begin{cases} \hat{\mathcal{O}} = \underset{\mathcal{O}}{\arg \max} p(\mathcal{X} \mid \mathcal{O}) \\ \hat{\lambda} = \underset{\lambda}{\arg \max} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda) \\ \downarrow \\ \{\hat{\lambda}, \hat{\mathcal{O}}\} = \underset{\lambda, \mathcal{O}}{\arg \max} p(\mathcal{X} \mid \mathcal{O}) p(\mathcal{O} \mid \hat{\mathcal{L}}, \lambda) p(\lambda) \end{cases}$$

Joint source-filter & acoustic model optimization

- HMM [18, 19, 20]
- NN [21, 22]

Andrew Senior

Relax approximation

Joint acoustic feature extracion & model training

Mixed-phase cepstral analysis + LSTM-RNN [22]

Generative Model-Based Text-to-Speech Synthesis

Outline

Generative TTS

Generative acoustic models for parametric TTS

Hidden Markov models (HMMs) Neural networks

Beyond parametric TTS

Learned features WaveNet End-to-end

Conclusion & future topics

Relax approximation Direct mapping from linguistic to waveform

No explicit acoustic features

$$\begin{aligned} \{\hat{\lambda}, \hat{\mathcal{O}}\} &= \operatorname*{arg\,max}_{\lambda, \mathcal{O}} p(\mathcal{X} \mid \mathcal{O}) p(\mathcal{O} \mid \hat{\mathcal{L}}, \lambda) p(\lambda) \\ & \Downarrow \\ \hat{\lambda} &= \operatorname*{arg\,max}_{\lambda} p(\mathcal{X} \mid \hat{\mathcal{L}}, \lambda) p(\lambda) \end{aligned}$$

Generative models for raw audio

- LPC [23]
- WaveNet [24]
- SampleRNN [25]

WaveNet: A generative model for raw audio

Autoregressive (AR) modelling of speech signals

$$\boldsymbol{x} = \{x_0, x_1, \dots, x_{N-1}\} \quad : \text{ raw waveform}$$
$$p(\boldsymbol{x} \mid \lambda) = p(x_0, x_1, \dots, x_{N-1} \mid \lambda) = \prod_{n=0}^{N-1} p(x_n \mid x_0, \dots, x_{n-1}, \lambda)$$

WaveNet: A generative model for raw audio

Autoregressive (AR) modelling of speech signals

$$\boldsymbol{x} = \{x_0, x_1, \dots, x_{N-1}\} \quad : \text{ raw waveform}$$
$$p(\boldsymbol{x} \mid \lambda) = p(x_0, x_1, \dots, x_{N-1} \mid \lambda) = \prod_{n=0}^{N-1} p(x_n \mid x_0, \dots, x_{n-1}, \lambda)$$

WaveNet [24] $\rightarrow p(x_n \mid x_0, \dots, x_{n-1}, \lambda)$ is modeled by *convolutional NN*

Andrew Senior

WaveNet: A generative model for raw audio

Autoregressive (AR) modelling of speech signals

$$\begin{aligned} \boldsymbol{x} &= \{x_0, x_1, \dots, x_{N-1}\} &: \text{ raw waveform} \\ p(\boldsymbol{x} \mid \lambda) &= p(x_0, x_1, \dots, x_{N-1} \mid \lambda) = \prod_{n=0}^{N-1} p(x_n \mid x_0, \dots, x_{n-1}, \lambda) \end{aligned}$$

WaveNet [24] $\rightarrow p(x_n \mid x_0, \dots, x_{n-1}, \lambda)$ is modeled by *convolutional NN*

Key components

- Causal dilated convolution: capture long-term dependency
- Gated convolution + residual + skip: powerful non-linearity
- Softmax at output: classification rather than regression

WaveNet - Causal dilated convolution

100ms in 16kHz sampling = 1,600 time steps

 \rightarrow Too long to be captured by normal RNN/LSTM

Dilated convolution

Exponentially increase receptive field size w.r.t. # of layers

WaveNet - Non-linearity

Andrew Senior

Generative Model-Based Text-to-Speech Synthesis

35 of 50

Analog audio signal

Andrew Senior

Sampling & Quantization

Andrew Senior

Categorical distribution \rightarrow Histogram

- Unimodal
- Multimodal
- Skewed

...

WaveNet – Conditional modelling

WaveNet vs conventional audio generative models

Assumptions in conventional audio generative models [23, 26, 27, 22]

- Stationary process w/ fixed-length analysis window
 - \rightarrow Estimate model within 20–30ms window w/ 5–10 shift
- Linear, time-invariant filter within a frame
 - \rightarrow Relationship between samples can be non-linear
- Gaussian process
 - \rightarrow Assumes speech signals are normally distributed

WaveNet

- Sample-by-saple, non-linear, capable to take additional inputs
- Arbitrary-shaped signal distribution

SOTA subjective naturalness w/ WaveNet-based TTS [24] HMM W LSTM W Concatenative W WaveNet

Andrew Senior

Outline

Generative TTS

Generative acoustic models for parametric TTS

Hidden Markov models (HMMs) Neural networks

Beyond parametric TTS

Learned feature WaveNet End-to-end

Conclusion & future topics

Relax approximation Towards Bayesian end-to-end TTS

Integrated end-to-end

$$\begin{cases} \hat{\mathcal{L}} = \arg \max_{\mathcal{L}} p(\mathcal{L} \mid \mathcal{W}) \\ \hat{\lambda} = \arg \max_{\lambda} p(\mathcal{X} \mid \hat{\mathcal{L}}, \lambda) p(\lambda) \\ & \downarrow \\ \hat{\lambda} = \arg \max_{\lambda} p(\mathcal{X} \mid \mathcal{W}, \lambda) p(\lambda) \end{cases}$$

Text analysis is integrated to model

Relax approximation Towards Bayesian end-to-end TTS

Bayesian end-to-end

$$\begin{cases} \hat{\lambda} = \arg \max_{\lambda} p(\mathcal{X} \mid \mathcal{W}, \lambda) p(\lambda) \\ \bar{\boldsymbol{x}} \sim f_{\boldsymbol{x}}(\boldsymbol{w}, \hat{\lambda}) = p(\boldsymbol{x} \mid \boldsymbol{w}, \hat{\lambda}) \\ & \downarrow \\ \bar{\boldsymbol{x}} \sim f_{\boldsymbol{x}}(\boldsymbol{w}, \mathcal{X}, \mathcal{W}) = p(\boldsymbol{x} \mid \boldsymbol{w}, \mathcal{X}, \mathcal{W}) \\ & = \int p(\boldsymbol{x} \mid \boldsymbol{w}, \lambda) p(\lambda \mid \mathcal{X}, \mathcal{W}) d\lambda \\ & \approx \frac{1}{K} \sum_{k=1}^{K} p(\boldsymbol{x} \mid \boldsymbol{w}, \hat{\lambda}_{k}) \quad \leftarrow \text{Ensemble} \end{cases}$$

Marginalize model parameters & architecture

Andrew Senior

Generative model-based text-to-speech synthesis

- Bayes formulation + factorization + approximations
- Representation: *acoustic features*, *linguistic features*, *mapping*
 - Mapping: Rules \rightarrow HMM \rightarrow NN
 - Feature: Engineered \rightarrow Unsupervised, learned
- Less approximations
 - Joint training, direct waveform modelling
 - $-\,$ Moving towards integrated & Bayesian end-to-end TTS

Naturalness: Concatenative \leq *Generative*

Flexibility: Concatenative \ll Generative (e.g., multiple speakers)

Beyond "text"-to-speech synthesis

TTS on conversational assistants

- Texts aren't fully contained
- Need more context
 - Location to resolve homographs
 - User query to put right emphasis

Beyond "text"-to-speech synthesis

TTS on conversational assistants

- Texts aren't fully contained
- Need more context
 - Location to resolve homographs
 - User query to put right emphasis

We need representation that can

organize the world information & make it accessible & useful

from TTS generative models

Beyond "generative" TTS

Generative model-based TTS

- Model represents process behind speech production
 - Trained to minimize error against human-produced speech
 - $\text{ Learned model} \rightarrow \textbf{speaker}$

Beyond "generative" TTS

Generative model-based TTS

- Model represents process behind speech production
 - Trained to minimize error against human-produced speech
 - Learned model \rightarrow speaker
- Speech is for communication
 - Goal: maximize the amount of information to be received

Missing "listener"

 \rightarrow "listener" in training / model itself?

Thanks!

Andrew Senior

References I

[1] D. Klatt.

Real-time speech synthesis by rule. Journal of ASA, 68(S1):S18–S18, 1980.

[2] A. Hunt and A. Black.

Unit selection in a concatenative speech synthesis system using a large speech database. In Proc. ICASSP, pages 373–376, 1996.

[3] K. Tokuda.

Speech synthesis as a statistical machine learning problem. https://www.sp.nitech.ac.jp/-tokuda/tokuda_asru2011_for_pdf.pdf. Invited talk given at ASRU 2011.

- [4] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis. *IEICE Trans. Inf. Syst.*, J83-D-II(11):2099–2107, 2000. (in Japanese).
- [5] H. Zen, K. Tokuda, and A. Black. Statistical parametric speech synthesis. Speech Commn., 51(11):1039–1064, 2009.
- [6] H. Zen, A. Senior, and M. Schuster. Statistical parametric speech synthesis using deep neural networks. In Proc. ICASSP, pages 7962–7966, 2013.
- [7] Y. Fan, Y. Qian, F.-L. Xie, and F. Soong. TTS synthesis with bidirectional LSTM based recurrent neural networks. In Proc. Interspeech, pages 1964–1968, 2014.

References II

[8] H. Zen.

Acoustic modeling for speech synthesis: from HMM to RNN. http://research.google.com/pubs/pub44630.html. Invited talk given at ASRU 2015.

[9] S. Takaki and J. Yamagishi.

A deep auto-encoder based low-dimensional feature extraction from FFT spectral envelopes for statistical parametric speech synthesis. In *Proc. ICASSP*, pages 5535–5539, 2016.

[10] G. Hinton, J. McClelland, and D. Rumelhart.

Distributed representation.

In D. Rumelhart, J. McClelland, and the PDP Research Group, editors, *Parallel distributed processing: Explorations in the microstructure of cognition*. MIT Press, 1986.

[11] H. Zen and A. Senior.

Deep mixture density networks for acoustic modeling in statistical parametric speech synthesis. In *Proc. ICASSP*, pages 3872–3876, 2014.

[12] X. Wang, S. Takaki, and J. Yamagishi.

Investigating very deep highway networks for parametric speech synthesis. In *Proc. ISCA SSW9*, 2016.

[13] Y. Saito, S. Takamichi, and Saruwatari.

Training algorithm to deceive anti-spoofing verification for DNN-based speech synthesis. In Proc. ICASSP, 2017.

[14] H. Zen, Y. Agiomyrgiannakis, N. Egberts, F. Henderson, and P. Szczepaniak.

Fast, compact, and high quality LSTM-RNN based statistical parametric speech synthesizers for mobile devices. In *Proc. Interspeech*, 2016.

References III

[15] P. Muthukumar and A. Black.

A deep learning approach to data-driven parameterizations for statistical parametric speech synthesis. arXiv:1409.8558, 2014.

[16] P. Wang, Y. Qian, F. Soong, L. He, and H. Zhao.

Word embedding for recurrent neural network based TTS synthesis. In *Proc. ICASSP*, pages 4879–4883, 2015.

[17] X. Wang, S. Takaki, and J. Yamagishi.

Investigation of using continuous representation of various linguistic units in neural network-based text-to-speech synthesis. *IEICE Trans. Inf. Syst.*, E90-D(12):2471–2480, 2016.

[18] T. Toda and K. Tokuda.

Statistical approach to vocal tract transfer function estimation based on factor analyzed trajectory hmm. In *Proc. ICASSP*, pages 3925–3928, 2008.

[19] Y.-J. Wu and K. Tokuda.

Minimum generation error training with direct log spectral distortion on LSPs for HMM-based speech synthesis. In *Proc. Interspeech*, pages 577–580, 2008.

[20] R. Maia, H. Zen, and M. Gales.

Statistical parametric speech synthesis with joint estimation of acoustic and excitation model parameters. In *Proc. ISCA SSW7*, pages 88–93, 2010.

[21] K. Tokuda and H. Zen.

Directly modeling speech waveforms by neural networks for statistical parametric speech synthesis. In *Proc. ICASSP*, pages 4215–4219, 2015.

[22] K. Tokuda and H. Zen.

Directly modeling voiced and unvoiced components in speech waveforms by neural networks. In *Proc. ICASSP*, pages 5640–5644, 2016.

[23] F. Itakura and S. Saito.

A statistical method for estimation of speech spectral density and formant frequencies. *Trans. IEICE*, J53A:35–42, 1970.

[24] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu.

WaveNet: A generative model for raw audio. arXiv:1609.03499, 2016.

- [25] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville, and Y. Bengio. SampleRNN: An unconditional end-to-end neural audio generation model. arXiv:1612.07837, 2016.
- [26] S. Imai and C. Furuichi. Unbiased estimation of log spectrum. In Proc. EURASIP, pages 203–206, 1988.
- [27] H. Kameoka, Y. Ohishi, D. Mochihashi, and J. Le Roux. Speech analysis with multi-kernel linear prediction. In *Proc. Spring Conference of ASJ*, pages 499–502, 2010. (in Japanese).

Generative Model-Based Text-to-Speech Synthesis

Generative Model-Based Text-to-Speech Synthesis

50 of 50